Italian National Agency for New Technologies, Energy and Sustainable Economic Development

Photoluminescent colour centres in lithium fluoride film imaging detectors for monochromatic hard X-rays

<u>M.A. Vincenti</u>¹, R.M. Montereali¹, E. Nichelatti², V. Nigro¹, M. Piccinini¹, M. Koenig³, P. Mabey³, G. Rigon³, B. Albertazzi³, Y. Benkadoum³, T. Pikuz⁴, N. Ozaki⁵, E.D. Filippov⁶, S. Makarov⁶, S. Pikuz⁶

¹ENEA C.R. Frascati, Fusion and Technologies for Nuclear Safety and Security Dept., Rome, Italy
 ²ENEA C.R. Casaccia, Fusion and Technologies for Nuclear Safety and Security Dept., Rome, Italy
 ³LULI-CNRS Ecole Polytechnique, CEA, Université Paris-Saclay, France
 ⁴Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
 ⁵Graduate School of Engineering, Osaka University Osaka, Japan
 ⁶Joint Institute for High Temperature RAS, Moscow, Russia

109° Congresso Nazionale SIF, Dipartimento di Fisica dell'Università di Salerno, 11 – 15 Settembre 2023

Lithium fluoride: material properties

Properties and colour centres:

- fcc ionic crystal;
- hard;
- almost non-hygroscopic;
- optically transparent from 120 nm to $7\mu m$ (band gap ~ 14 eV);

irradiation by ionising radiations (X rays, γ rays, neutrons, protons etc.) gives rise to stable formation at room temperature (RT) of primary and aggregate colour centres (CCs) characterized by wide tunability and high emission quantum efficiency, even at RT;

LiF is a nearly tissue-equivalent material ($Z_{eff} = 8.1$, $Z_{eff water} = 7.5$)

M.A. Vincenti, 109° Congresso Nazionale SIF, Dipartimento di Fisica dell'Università di Salerno, 11-15 Settembre 2023

Main applications:

- solid state tuneable lasers;
- miniaturized light sources;
- radiation detectors;
- dosemeters.

Nearest neighbour distance (Å)	2.013	
Melting point (°C)	848.2	
Density (g/cm ³ a RT)	2.639	
Molecular weight	25.939	
Refractive index at 640 nm, RT	1.3912	
Solubility (g/100 g H ₂ O a RT)		
Hardness (Knoop)	102	
Main physical parameters of LiF 2		

Main colour centres in LiF

F

F centre is an anion vacancy occupied by an electron.

F₂ electronic defect consists of two nearest-neighbour F centres along a <100> direction of the cubic lattice.

F₃ centre consists of three centres in nearestneighbour sites in the (111) plane.

Center	E _a (eV, nm)	E _e (eV, nm)	FWHW _a (eV)	FWHW _e (eV)
F	5.00, 248	-	0.76	
F ₂	2.79, 444	1.83, 678	0.16	0.36
F ₃ ⁺	2.77, 448	2.29, 541	0.29	0.31

Thermally-evaporated LiF thin films

Polycrystalline LiF films can be grown by thermal evaporation on different substrates, in controlled conditions, tailoring the appropriate geometry, size and thickness.

1 μ m thick LiF film grown on Si(100) substrate and its 3D AFM image

Controlled deposition parameters

- \checkmark pressure < 1 mPa;
- deposition rate: 0.5 ÷ 2 nm/s;
- \checkmark film thickness: up to few μ m
- substrate temperature: 30 ÷ 350 °C \checkmark
- nature of substrate: glass, silica, LiF
- crystals, Si, plastic and metal layers, etc. $_{\scriptscriptstyle \varDelta}$

LiF radiation imaging detectors

- They are based on **optical reading** of F_2 and F_3^+ photoluminescence. Main features:
- ✓ multi-purpose (X-rays, protons, neutrons, electrons, etc.)
- easy handling (insensitive to light, no development needs)
- ✓ efficient optical readout process (Vis spectral range)
- ✓ fast evaluation time (seconds)
- ✓ wide dynamic range (> 10⁵)
- ✓ high spatial resolution (intrinsic < 2 nm, standard < 250 nm)
- ✓ large field of view (> 1 cm²)
- PL signal stability (signal stability at RT, multiple evaluations without signal loss)
- reusability (after thermal annealing process).
 M.A. Vincenti, 109° Congresso Nazionale SIF, Dipartimento di Fisica dell'Università di Salerno, 11- 15 Settembre 2023

X-rays irradiation conditions and samples

Detectors:

- ✓ LiF thin films on glass and Si(100) substrates
- thickness = 0.5, 1.1 and 1.8 μm
- substrate temperature = 300 °C

- X-ray beam energy = 7 keV
- > Beam transverse area ~ (2 \times 2) mm²
- > Dose range = $(13 \div 4.5 \times 10^3)$ Gy
- > X-ray depth of attenuation in LiF ~ 220 μ m

Fluorescence images of the thickest LiF films (t = 1.8μ m) grown on glass (left) and Si(100) (right) substrates irradiated with monochromatic 7 keV X-rays at five doses.

Spectrally-integrated PL vs Dose

PL response vs. Dose of LiF film detectors grown on glass (a) and Si(100) (b) substrates irradiated with monochromatic 7 keV X-rays, together with their linear best fit.

 The PL response of LiF film detectors linearly depends on the irradiation dose, in the investigated dose range;

At the same irradiation dose, the PL intensity increases with the film thickness;

Lowest detected dose = 13 Gy;

The ratios of the slopes of the best-fit straight lines for the films grown on Si(100) to those on glass in the same deposition run is ~ 1.5. This PL enhancement of about 50% is mainly due to the reflectivity of the silicon substrate in the visible spectral range, where the absorption and emission bands of the F_2 and F_3^+ CCs are located.

M.A. Vincenti et al., ECS Journal of Solid State Science and Technology, 2023 12 066008

Edge-enhancement X-ray imaging experiments

Fluorescence image of the test mesh stored in the LiF film grown on glass, thickness 1.8 μ m, dose ~ 4×10³ Gy (objective magnification 10x, bar size 100 µm).

8

Spatial resolution of LiF detectors

Fluorescence image of the Au mesh stored in the 1.8 μ m thick LiF film grown on glass irradiated with 7 keV X-rays, dose = 3.8×10^3 Gy (objective magnification $100 \times$, bar size = 20 μ m)

ENEN

Half Width at Half Maximum = (0.38 \pm 0.05) µm

Conclusions and future perspectives

- The PL response of LiF film-based detectors of increasing thicknesses, irradiated with 7 keV X-rays at different doses, was measured using a fluorescence microscope and tested in edge-enhancement imaging experiments.
- The PL response shows a linear behavior in the investigated dose range (13 ÷ 4.5×10³ Gy) both for LiF films grown on glass and Si(100) substrate.
- ✓ The lowest detected dose was of 13 Gy.
- ✓ A substrate-enhanced PL response amplified by 50% was obtained for LiF film detectors grown on Si(100) with respect to those deposited on glass in the same deposition run.
- A high submicrometric (< 0.5 µm) spatial resolution was obtained on a large field of view (> 1 cm²).
- ✓ Further experiments with monochromatic X-rays at energies of several keV are under way to study the LiF film sensitivity and their RPL dose response and improve the reproducibility of the observed behavior by a careful control of the film growth conditions.

Thanks for your attention!

aurora.vincenti@enea.it

This research is partially carried out within the TECHEA - Technologies for Health ENEA project.

